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Novel binuclear ruthenium(II) complexes with bis(�-phosphinato-�O:�O0) bridges,
[Ru(dpp)(bpy)2]2(BF4)2 (1), [Ru(bmp)(bpy)2]2(BF4)2 (2) (Hdpp¼ diphenylphosphinic acid,
Hbmp¼ bis(4-methoxyphenyl)phosphinic acid, bpy¼ 2,20-bipyridine), have been prepared
and characterized. The structures of 1 and 2 contain a diruthenium(II) core with two
phosphinates and four bpy ligands. These are the first reported examples of such Ru(II)
phosphinate structures. Oxidation of cinnamyl alcohol by molecular oxygen was carried out
using 1 and 2 as catalysts and as an oxidant. In the presence of 2, cinnamyl alcohol gave
cinnamaldehyde (44% in 7 h). In CV, two reversible waves at þ0.31, þ0.59V for 1 and þ0.27,
þ0.54V for 2 were observed.

Keywords: Ruthenium(II); Binuclear complex; Phosphinato bridge; Crystal structure;
Reactivity

1. Introduction

Polynuclear ruthenium complexes with various structure types have been reported,
classified as paddle wheel, hemerythrine, and poly bridging types [1–3]. In almost cases
of paddle wheel and hemerythrine types, complexes have carboxylato bridges. Recently,
reactions between transition metal ions and a phosphorus acid or ester in phosphate
metabolism have attracted the attention of bioinorganic and inorganic chemists [4, 5].
It is expected that a diphenyl phosphinic acid would adopt the same bridging style
as a carboxylate group. However, no reports of dinuclear ruthenium(II) complexes with
bis(�-phosphinato-�O:�O0) bridges are known. In our previous studies, we described
the syntheses, structures and magnetic properties of novel dinuclear oxovanadium(IV)
and copper(II) complexes with phosphinato bridges [6–8]. It was found that the
oxovanadium(IV) complexes catalyzed oxidation of alcohols.

The oxidation of alcohols is one of the most important reactions in organic chemistry
[9]. Generally, chromic acid and DMSO are used, but recently, vanadium, complex
molybdenum and ruthenium catalysts and oxygen or peroxides have been used [10–12];
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dinuclear complexes have rarely been used as catalysts. Here, we report the
syntheses, crystal structures, and reactivities of [Ru(dpp)(bpy)2]2(BF4)2 (1)
and [Ru(bmp)(bpy)2]2(BF4)2 (2) (Hdpp¼ diphenylphosphinic acid, Hbmp¼
bis(4-methoxyphenyl)phosphinic acid, bpy¼ 2,20-bipyridine), the first examples of
binuclear ruthenium(II) complexes with bis(�-phosphinato-�O:�O0) bridges.

2. Experimental

2.1. Materials

All chemicals and solvents were of reagent grade and used without further purification.
The complex cis-[Ru(bpy)2Cl2] was synthesized according to literature methods [13].

2.2. Physical measurements

Elemental analyses were obtained at the Service Center of Elemental Analysis at
Kyushu University. Absorption spectra were recorded on a Perkin-Elmer Lambda 19
spectrophotometer. Electrochemistry experiments were performed with a BAS100B
potentiostat with a Pt electrode and an Ag/Agþ reference electrode.

2.3. [Ru(dpp)(bpy)2]2(BF4)2 (1)

To a solution of cis-[Ru(bpy)2Cl2] (456mg, 1mmol) in methanol (10 cm3) was added
AgBF4 (388mg, 2mmol). The solution was heated and stirred for 10mins in the absence
of light, and the resulting suspension centrifuged and filtered off. A solution of Hdpp
(218mg, 1mmol) in methanol (10 cm3) was added to the filtrate with stirring. To the
resulting solution, Et3N (101mg, ca 1mmol) was added. The dark purple solution was
filtered and the filtrate allowed to stand for several weeks at room temperature.
The dark purple crystals that formed were collected, washed with methanol and dried
in air. Anal. Calcd for C64H54B2F8N8O5P2Ru2 (%): C, 52.91; H, 3.75; N, 7.71. Found:
C, 52.60; H, 3.69; N, 7.72.

2.4. [Ru(bmp)(bpy)2]2(BF4)2 � 3MeOH (2)

The synthetic procedure was similar to that for 1 except that Hbmp was used instead
of Hdpp. Anal. Calcd for C68H60B2F8N8O8P2Ru2 � 3MeOH (%): C, 51.47; H, 3.99;
N, 6.74. Found: C, 51.64; H, 4.39; N, 6.79.

2.5. X-ray crystallography

Crystal data collection parameters for 1 and 2 along with the final refinement details are
summarized in table 1. Diffraction data were measured on a Rigaku AFC5S automated
four-circle diffractometer with graphite-monochromated Mo-K� (�¼ 0.71069 Å)
radiation. Structures were solved by direct methods [14] and expanded using Fourier
techniques [15]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were refined using the riding model.
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3. Results and discussion

3.1. Crystal structures of 1

The crystal structure of 1 comprises two crystallographically independent, binuclear
molecules. The two units, 1A and 1B are shown in figures 1 and 2 with the atom
numbering scheme. Selected bond lengths and angles are listed in tables 2 and 3. Each
binuclear complex cations consists of two bis(bipyridyl)ruthenium(II) cores with �, �
configurations, and two bridging phosphinates. Separations between Ru(II) centres in
1A and 1B are 4.977(1) and 5.087(1) Å, respectively. The coordination environment
around each ruthenium(II) ion is a distorted octahedron. The most unusual feature of
the structures of 1A and 1B is the dihedral angle (�) observed between the least-squares
planes through the bridging phosphinates, [Oa, P,Ob] and [Oa,Ob,Ru]. The definition
of coordination modes is based on that of bridging carboxylates [8, 16]. Values of � are
141.3 and 150.1� for 1A [O1,P1,O2/O2,O1,Ru1 and O1,O2,Ru10] and 145.3 and 141.0�

for 1B [O3,P2,O4/O4,O3,Ru2 and O3,O4,Ru20], respectively. These dihedral
angles show the coordination of phosphinates groups near to syn–anti bridging
modes. Metal–metal distances in 1A and 1B are almost equal to those of related
copper(II) and oxovanadium(IV) complexes (4.811(1) and 4.87(2) Å, respectively) with
syn–anti coordination; copper(II) complex with syn–syn bridging modes have a shorter
contact (3.993(8) Å) [6–8].

3.2. Crystal structures of 2

The structure of complex 2 is shown in figure 3 and selected bond lengths and angles are
listed in table 4. The structure of 2 is almost same as that of 1 with an Ru–Ru separation
of 4.9523(11) Å; � values are 138.8� and 139.9�. Mean Ru–O(dpp or bmp) and
Ru–N(bpy) distances in 1A, 1B, and 2 are 2.13 and 2.03 Å, respectively, and Ru–O
distances are longer than those in copper(II) and oxovanadium(IV) complexes

Table 1. Crystal data and refinement details for 1 and 2.

Formula C64H54B2F8N8O5P2Ru2 (1) C68H60B2F8N8O8P2Ru2 (2)
Formula weight 1452.86 1554.95
Crystal system Monoclinic Triclinic
Space group P21/n P�1

a (Å) 20.177(4) 14.344(5)
b (Å) 12.961(4) 11.640(4)
c (Å) 24.017(3) 11.654(6)
� (�) 102.16(1)
� (�) 102.80(1) 105.91(4)
� (�) 100.14(2)
V (Å)3 6124(2) 2228.6(14)
Z 4 2
Dc(g cm

�3) 1.575 1.317
�(Mo-K�) (cm�1) 6.28 8.761
No. of obs. (I42.00�(I)) 6787 4158
No. of variables 872 482
R 0.058 0.067
Rw 0.048 0.061
Largest diff. peak (e Å�3) 0.82 0.84
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(1.94 and 2.04 Å, respectively). Mean Ru–N(bpy) bonds distances are almost equal to
those of the copper(II) complexes (2.00 Å), but shorter than those of vanadium(IV)
complexes (2.16 Å). Ru–O and Ru–N distances are in agreement with those of other
dinuclear ruthenium complexes of the paddle wheel, hemerythrine type, and
polypyridine bridging types [1–3]. However, Ru–Ru separations are considerably
longer than those in paddle wheel and hemerythrine complexes (2.32 and 3.26 Å,
respectively) [1, 2] and thus the present species represent a new structure type.

3.3. Electronic spectra

Four major bands are observed in the electronic spectra of 1 and 2. These are are
labelled from I to IV in order of increasing energy in table 5. Bands I and II should be
assigned to a 	* d	(Ru) transition consistent with previous assignments for related
bpy–Ru(II) complexes [3a, 13, 17]. Bands III and IV are assigned to 	* 	 transitions
of bpy.

3.4. Oxidation of alcohol by the complexes

Complex 1 or 2 (0.05mmol) was dissolved in acetonitrile (1.5 cm3) in a 25 cm3 round
bottomed flask under O2 (1 atm). Cinnamyl alcohol (1.0mmol) in acetonitrile (1.5 cm3)
was added to the flask. The mixture was stirred for 7 h at room temperature. Yields of
cinnamaldehyde (table 6) were determined by GLC using an internal standard. In the
absence of complex as catalyst, oxidation of cinnamyl alcohol did not take place.

Table 2. Selected bond lengths and bond angles for 1A.

Ru1–Ru10 4.977(1) Ru1–O1 2.135(5)
Ru1–O2 2.125(6) Ru1–N1 2.037(7)
Ru1–N2 2.018(7) Ru1–N3 2.053(7)
Ru1–N4 2.006(8) P1–O1 1.517(6)
P1–O2 1.507(7)

N1–Ru1–N2 80.1(3) N3–Ru1–N4 79.8(3)
N2–Ru1–N4 92.5(3) N3–Ru1–O1 94.8(2)
O1–Ru1–O20 89.3(2) O20–Ru1–N1 82.4(3)
N1–Ru1–N3 174.5(3) N2–Ru1–O1 169.8(2)
N4–Ru1–O20 179.5(3) O1–P1–O2 116.4(3)

Table 3. Selected bond lengths and bond angles for 1B.

Ru2–Ru20 5.087(1) Ru2–O3 2.113(5)
Ru2–O4 2.110(6) Ru2–N5 2.052(6)
Ru2–N6 1.991(6) Ru2–N7 2.049(7)
Ru2–N8 1.994(8) P2–O3 1.528(6)
P2–O4 1.508(6)

N5–Ru2–N6 80.0(3) N7–Ru2–N8 79.1(3)
N6–Ru2–N8 93.8(3) N7–Ru2–O3 91.6(2)
O3–Ru2–O40 91.1(2) O40–Ru2–N5 84.2(3)
N5–Ru2–N7 175.4(3) N6–Ru2–O3 171.2(2)
N8–Ru2–O40 178.1(2) O3–P2–O4 116.0(3)
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Oxidation was very small when 1 was used as catalyst. However, complex 2 gave a 44%
yield of aldehyde. By comparison, only oxovanadium(IV) complexes of bmp give
a higher yield [7].

3.5. Electrochemistry of 1 and 2

The redox behaviour of 1 and 2 has been studied by CV using a platinum button
working electrode in MeCN containing 0.1M [NBun4](ClO4) as supporting electrolyte
(table 7). For 1 and 2, two quasi-reversible redox waves were observed. E1/2 values
of þ0.31V for 1 and þ0.27V for 2 were assigned to Ru(II,II)/Ru(II,III) and values of
þ0.59V for 1 and þ0.54V for 2 were assigned to Ru(II,III)/Ru(III,III) processes. These
redox potentials are in agreement with those measured for related bpy–Ru(II)
complexes [3]. In the CV of 2, two minor redox processes at �0.05 and �0.92V were
observed. The former is due to the partial decomposition of the Ru(II) complex and the
latter is attributable to the reduction of bpy [3b]. The different electrochemical
behaviour of 1 and 2 clearly affects their reactivity, but the reason for this effect is not
clear at present.

Table 4. Selected bond lengths and bond angles for 2.

Ru1–Ru10 4.953(1) Ru1–O1 2.133(7)
Ru1–O2 2.134(5) Ru1–N1 1.985(9)
Ru1–N2 2.075(7) Ru1–N3 2.055(7)
Ru1–N4 2.042(8) P1–O1 1.499(7)
P1–O2 1.525(4)
N1–Ru1–N2 78.7(3) N3–Ru1–N4 79.6(3)
N2–Ru1–N4 172.8(3) N3–Ru1–O1 88.6(3)
O1–Ru1–O20 89.9(2) O20–Ru1–N1 89.9(2)
N1–Ru1–N3 91.5(3) N1–Ru1–O1 179.8(2)
N3–Ru1–O20 170.9(2) O1–P1–O2 116.7(3)

Table 5. Electronic absorption data for 1 and 2 in MeCN.

�max, nm (", 104M�1 cm�1)

Complex I II III IV

1 525(1.6) 365(1.7) 295(7.8) 245(3.8), 220sh(6.2)
2 530(1.3) 355(1.4) 290(6.6) 242(9.7), 230sh(8.1)

Table 6. Yields for oxidation of cinnamyl alcohol using 1 and 2.

Complex Yield of aldehyde (%)a

Blank �0
1 2
2 44
[(VO)2(dpp)3(bpy)2]NO3�2H2O

b 21
[(VO)2(bmp)3(bpy)2]NO3�H2O

b 66
[Cu2(bmp)2(bpy)2](NO3)2

b 5

aGLC yield with internal standard. bRef. [7].
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Supplementary data

Crystallographic data have been deposited with the Cambridge Crystallographic Data

Centre, numbers CCDC Number 288279 (1) and 288280 (2). Copies of this information

may be obtained free of charge free from The Director, CCDC, 12 Union Road,

Cambridge CB2 1EZ, UK (Fax: þ44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).
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